Deep Learning Specialization on Coursera

2012年龙星计划-机器学习课件

+7 投票

今天,如果你从事互联网搜索,在线广告,用户行为分析,图像识别,自然语言理解,或者生物信息学,智能机器人,金融预测,那么有一门核心课程你必须深入了解,那就是-机器学习(Machine Learning)。作为人工智能的核心内容,机器学习致力于开发智能的计算机算法从历史经验数据中学习出有用的模型,从而对未知数据或事件做预测。作为一门前沿学科,它结合了计算机算法,概率论,统计学,脑神经科学,控制论,心理学,和优化理论等多方面知识。

2012.08.06~2012.08.10,百度多媒体部总监余凯博士和百度的访问学者张潼博士在清华大学讲授了龙星计划机器学习》的专业课程。两位授课者在机器学习领域享有国际声誉,不仅各自在世界顶级杂志和会议上发表了上百篇学术论文,而且都在著名高科技公司积累了多年左右的工作经验。通过这门课程,学生不仅可以系统的掌握机器学习的基本知识,理论和算法,还可以了解到企业实践过程中的机器学习经验,通过两位专家列举的实例领略机器学习在应用中发挥的巨大作用。

下载链接:(版权所有:http://bigeye.au.tsinghua.edu.cn/DragonStar2012/download.html

Day 1

lecture 1: Introduction to ML and review of linear algebra, probability, statistics (kai)

lecture 2: linear model (tong)

lecture 3: overfitting and regularization (tong)

lecture 4: linear classification (kai)

Day 2

lecture 5: basis expansion and kernel methods (kai)

lecture 6: model selection and evaluation (kai)

lecture 7: model combination (tong)

lecture 8: boosting and bagging (tong)

Day 3

lecture 9: overview of learning theory (tong)

lecture 10: optimization in machine learning (tong)

lecture 11: online learning (tong)

lecture 12: sparsity models (tong)

Day 4

lecture 13: introduction to graphical models (kai)

lecture 14: structured learning (kai)

lecture 15: feature learning and deep learning (kai)

lecture 16: transfer learning and semi supervised learning (kai)

Day 5

lecture 17: matrix factorization and recommendations (kai)

lecture 18: learning on images (kai)

lecture 19: learning on the web (tong)

lecture 20: summary and road ahead (tong)

 

P.S. : 2012年龙星计划全部课程见 http://dragonstar.ict.ac.cn/dragonstar/index.asp

时间: 2012年 8月 11日 分类:机器学习 作者: fandywang (2,370 基本)
更改标签 2012年 8月 13日 作者:fandywang
链接已经失效了。请问还有其他链接可供下载吗?谢谢!

1个回答

0 投票
链接已经失效了。请问还有其他链接可供下载吗?谢谢!
已回复 2013年 4月 5日 作者: mousepotato (140 基本)
pdf的链接还是可以用的
NLPJob

Text Summarization

Keyword Extraction

Text Processing

Word Similarity

Best Coursera Course

Best Coursera Courses

Elastic Patent

本站架设在 DigitalOcean 上, 采用创作共用版权协议, 要求署名、非商业用途和保持一致. 转载本站内容必须也遵循“署名-非商业用途-保持一致”的创作共用协议.