Deep Learning Specialization on Coursera
NLPJob

标签热度

机器学习 coursera 斯坦福大学 公开课 斯坦福 深度学习 自然语言处理 python 数据科学 andrew ng 数学 nlp 数据分析 数据挖掘 神经网络 大数据 计算机科学 英语 deep learning 统计学 算法 课件 数据可视化 机器学习公开课 机器学习笔记 google 机器学习视频 计算机 推荐系统 数据结构 商业 r语言 java 密码学 udacity 金融 免费电子书 电子书 公开课笔记 计算机视觉 商务英语 学术英语 python数据可视化 机器学习课程 机器人 ted 文本挖掘 r 视频 java编程 回归模型 excel 深度学习课程 mysql cousera公开课 统计 大数据公开课 ted公开课 ted演讲 线性回归 mit 概率图模型 领导力 金融市场 tensorflow 学习英语 物联网 大数据专项课程 python入门 大数据课程 英语写作 英语学习 算法课程 强化学习 高级机器学习 kaggle 文本分析 机器学习资料 函数式编程 scala 游戏设计 cousera 机器学习系统 机器人公开课 开源代码 人工智能 普林斯顿大学 machine learning 线性代数 代价函数 软件工程 javascript 伯克利 市场营销 财务会计 沃顿商学院 网页开发 网站开发 web开发 网络安全 python数据科学 商业分析 非对称密码学 对称密码学 应用密码学 大规模数据科学 英语听说 概率 机器学习基石 python机器学习 算法公开课 源代码 数学思维 社交网络分析 微积分公开课 杜克大学 机器学习公开课视频 公开课视频 coursera公开课视频 coursera公开课 贝叶斯 信息论 离散数学 宾夕法尼亚大学 neural networks 伯克利大学 密歇根大学 成本函数 梯度下降 云计算 编译器 自动机 cs101 daphne koller spark 软件 管理 会计 英语交流 商业策略 风险管理 资产管理 地理信息系统 gis 卷积神经网络 面向对象编程 序列模型 移动应用开发 数据库 计算机通信 敏捷开发 高级商务分析 商务分析 商务英语课程 c语言 数据管理 投资 计算原理 计算基础 推荐系统导论 学术英语写作 android应用开发 android开发 android 机器人课程 机器人学 数据科学竞赛 yandex 深度学习公开课 深度学习书籍 数据集 机器学习资源 分布式 微积分 大规模机器学习系统 统计推断 数据科学公开课 游戏 数学思维公开课 机器学习课件 数学公开课 微积分公开课视频 微积分公开课下载 mit微积分 mit公开课 龙星计划 神经网络公开课 coursera视频 斯坦福公开课 windows ios udacity公开课 无人驾驶汽车 人机交互公开课 人机交互 正则化 过拟合 逻辑回归 模型思维 网易公开课 acl net 逻辑 cmu 情感分析 我爱公开课 引言 普林斯顿 经济 saas 52opencourse 逻辑导引 图模型 chirs manning dan jurafsky ppt 时间序列 go语言课程 go语言 工程师 语法 区块链基础 区块链 软件开发 商务基础 运营管理 商务 机器学习实战 数据系统 投资管理 swift 计算机安全与系统管理 系统管理 计算机安全 seo策略 seo工具 seo 组织领导力 css3 html5 会计基础 c sharp 英语沟通 并发 并行 全栈开发 数据仓库 商业智能 投资策略 金融基础 数据工程 python零基础 安全系统 现代密码学 硬件安全 软件安全 网络安全基础 递归神经网络 信息检索 云计算网络 云计算应用 云计算基础 云计算概念 分组交换网络 局域网 创意写作 写作 数学基础 台湾大学 基因序列 生物信息学 斯坦福算法课程 软件架构 软件设计 java程序设计 r语言基础 图论 组合数学 python数据表示 python基础 深度学习专项课程 游戏设计与开发 游戏开发 游戏设计概念 游戏设计艺术 angular 恐龙古生物学 恐龙 古生物学 推荐系统评价 jquery 英语语法 c# 高级算法 算法专项 iot python专项课程 python入门课程 商务英语交流技巧 商务英语交流 python社交网络分析 python文本挖掘 机器学习专项 金融价值 金融决策 金融公开课 数据结构与算法 大数据机器学习 大数据分析 商业与金融建模 金融建模 c++ 学术英语听说 数据分析工具 编程入门 编程 编程基础 算法思维 计算机基础 秘钥管理 hdfs 数据工程师 hive 3d交互设计 3d建模 虚拟现实 vr 洛桑联邦理工学院 函数式编程入门 数据科学课程 数据科学专项课程 学术英语课程 学术英语写作课程 斯坦福算法专项课程 斯坦福算法 python数据分析 英文简历 英文面试 英文写作 贝叶斯方法 商业分析技术 大数据建模 数据获取 数据清洗 文本挖掘课程 聚类分析 python公开课 python课程 主成分分析 深度学习资料 词意消歧 词义消歧 推荐系统入门 python书籍 机器学习算法 数据结构课程 图像处理 贝叶斯方法实战 深度学习源代码 sibyl p2p 机器学习书籍 数据结构资料 凸优化 推荐系统入门资料 数据科学导论 可视化 机器学习开源工具包 jane mcgonigal 公开课社区 挖课 courseminer 文本情感分析 多变量微积分 社会计算 数学分析公开课 概率图模型公开课 百度 吴恩达 香港科技大学 函数式语言 scala公开课 class2go coursera无法连接 coursera打不开 keith devlin 数学思维简介 社交网络 余凯 张潼 机器人视频 robert sedgewick 算法上 多伦多大学 莱斯大学 华盛顿大学 佐治亚理工学院 神经网络视频 矩阵 coursera在线视频

Text Summarization

Keyword Extraction

Text Processing

Word Similarity

Best Coursera Course

Best Coursera Courses

Elastic Patent

+13 投票

斯坦福大学机器学习第七课"正则化“学习笔记,本次课程主要包括4部分:

1)  The Problem of Overfitting(过拟合问题)

2)  Cost Function(成本函数)

3)  Regularized Linear Regression(线性回归的正则化)

4)  Regularized Logistic Regression(逻辑回归的正则化)

以下是每一部分的详细解读。

 

1)  The Problem of Overfitting(过拟合问题)

拟合问题举例-线性回归之房价问题:

a) 欠拟合(underfit, 也称High-bias)

欠拟合-我爱公开课-52opencourse.com

b) 合适的拟合:

拟合问题-我爱公开课-52opencourse.com

c) 过拟合(overfit,也称High variance)

过拟合-我爱公开课-52opencourse.com

什么是过拟合(Overfitting):

如果我们有非常多的特征,那么所学的Hypothesis有可能对训练集拟合的非常好(\(J(\theta) = \frac{1}{m}\sum_{i=1}^m{\frac{1}{2}(h_\theta(x^{(i)}) - y^{(i)})^2} \approx 0\)),但是对于新数据预测的很差。

过拟合例子2-逻辑回归:

与上一个例子相似,依次是欠拟合,合适的拟合以及过拟合:

a) 欠拟合

逻辑回归欠拟合-我爱公开课-52opencourse.com

b) 合适的拟合

逻辑回归合适的拟合-我爱公开课-52opencourse.com

c) 过拟合

逻辑回归过拟合-我爱公开课-52opencourse.com

如何解决过拟合问题:

首先,过拟合问题往往源自过多的特征,例如房价问题,如果我们定义了如下的特征:

特征选择-我爱公开课-52opencourse.com

那么对于训练集,拟合的会非常完美:

房价问题过拟合-我爱公开课-52opencourse.com

所以针对过拟合问题,通常会考虑两种途径来解决:

a) 减少特征的数量:

-人工的选择保留哪些特征;

-模型选择算法(之后的课程会介绍)

b) 正则化

-保留所有的特征,但是降低参数\(\theta_j\)的量/值;

-正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;

 

2)  Cost Function(成本函数)

依然从房价预测问题开始,这次采用的是多项式回归:

a) 合适的拟合:

多项式回归正则化-我爱公开课-52opencourse.com

b) 过拟合

多项式回归过拟合-我爱公开课-52opencourse.com

直观来看,如果我们想解决这个例子中的过拟合问题,最好能将\(x^3, x^4\)的影响消除,也就是让\(\theta_3 \approx 0, \theta_4 \approx 0\).

假设我们对\(\theta_3, \theta_4\)进行惩罚,并且令其很小,一个简单的办法就是给原有的Cost function加上两个略大惩罚项,例如:

成本函数-我爱公开课-52opencourse.com

这样在最小化Cost function的时候,\(\theta_3 \approx 0, \theta_4 \approx 0\).

正则化:

参数\(\theta_0, \theta_1, ..., \theta_n\)取小一点的值,这样的优点:

-“简化”的hypothesis;

-不容易过拟合;

对于房价问题:

-特征包括:\(x_1, x_2, ... , x_{100}\)

-参数包括:\(\theta_0, \theta_1, ..., \theta_n\)

我们对除\(\theta_0\)以为的参数进行惩罚,也就是正则化:

对cost function进行正则化-我爱公开课-52opencourse.com

正式的定义-经过正则化的Cost Function有如下的形式:

正则化正式的定义-我爱公开课-52opencourse.com

其中\(\lambda\)称为正则化参数,我们的目标依然是最小化\(J(\theta)\): \(min_{\theta} J(\theta)\)

例如,对于正则化的线性回归模型来说,我们选择\(\theta\)来最小化如下的正则化成本函数:
正则化的线性回归模型—我爱公开课-52opencourse.com

如果将 \(\lambda\) 设置为一个极大的值(例如对于我们的问题,设 \(\lambda = 10^{10}\))? 那么

-算法依然会正常的工作, 将 \(\lambda\)设置的很大不会影响算法本身;

-算法在去除过拟合问题上会失败;

-算法的结构将是欠拟合(underfitting),即使训练数据非常好也会失败;

-梯度下降算法不一定会收敛;

这样的话,除了\(\theta_0\),其他的参数都约等于0, \(h_{\theta}(x) = \theta_0\), 将得到类似如下的欠拟合图形:

欠拟合线性回归-我爱公开课——52opencourse.com

关于正则化,以下引自李航博士《统计学习方法》1.5节关于正则化的一些描述:

模型选择的典型方法是正则化。正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penalty term)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。比如,正则化项可以是模型参数向量的范数。

正则化符合奥卡姆剃刀(Occam's razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。

3)  Regularized Linear Regression(线性回归的正则化)

线性回归包括成本函数,梯度下降算法及正规方程解法等几个部分,不清楚的读者可以回顾第二课第四课的笔记,这里将分别介绍正则化后的线性回归的成本函数,梯度下降算法及正规方程等。

首先来看一下线性回归正则化后的Cost function:

线性回归正则化Cost function-我爱公开课-52opencourse.com

我们的目标依然是最小化\(J(\theta)\),从而得到相应的参数\(\theta\). 梯度下降算法是其中的一种优化算法,由于正则化后的线性回归Cost function有了改变,因此梯度下降算法也需要相应的改变:

正则化线性回归梯度下降算法-我爱公开课-52opencourse.com

注意,对于参数\(\theta\),梯度下降算法需要区分\(\theta_0\)和\(\theta_1, \theta_2, ... ,\theta_n\)。

同样的正规方程的表达式也需要改变,对于

X 是m * (n+1)矩阵

正规方程-我爱公开课——52opencourse.com

y是m维向量:

正规方程表达式-我爱公开课-52opencourse.com

正则化后的线性回归的Normal Equation的公式为:

线性回归正则化Normal Equation-我爱公开课-52opencourse.com

假设样本数m小于等于特征数x, 如果没有正则化,线性回归Normal eqation如下:

\[\theta = (X^T X)^{-1}X^T y\]

如果\(X^T X\)不可逆怎么办?之前的办法是删掉一些冗余的特征,但是线性回归正则化后,如果\(\lambda > 0\),之前的公式依然有效:

不可逆后的正规方程-我爱公开课-52opencourse.com

其中括号中的矩阵可逆。

 

4)  Regularized Logistic Regression(逻辑回归的正则化)

和线性回归相似,逻辑回归的Cost Function也需要加上一个正则化项(惩罚项),梯度下降算法也需要区别对待参数\(\theta).

再次回顾一些逻辑回归过拟合的情况,形容下面这个例子:

逻辑回归过拟合-我爱公开课-52opencourse.com

其中Hypothesis是这样的:

逻辑回归假设空间-我爱公开课-52opencourse.com

逻辑回归正则化后的Cost Function如下:

正则化逻辑回归Cost Function-我爱公开课-52opencourse.com

梯度下降算法如下:

正则化逻辑回归梯度下降算法-我爱公开课-52opencourse.com

其中\(h_\theta(x) = \frac{1}{1+e^{-\theta^Tx}}\).

 

image

参考资料:

第七课“正则化”的课件资料下载链接,视频可以在Coursera机器学习课程上观看或下载: https://class.coursera.org/ml
PPT   PDF

李航博士《统计学习方法

http://en.wikipedia.org/wiki/Regularization_%28mathematics%29

http://en.wikipedia.org/wiki/Overfitting

 

如转载52opencourse上的任何原创文章,请务必注明出处,谢谢!欢迎大家在这里讨论和学习!

分类:机器学习 | 用户: (3.2k 分)
修改于 用户:
我也来顶一个,怒赞!
谢谢 !欢迎常来看看!

请教问题:

1 对于正则化,优点是使模型“简单”--》这"简单"怎么理解

2  正则化防止过拟合,但引入正则化还会引起什么缺点?怎么理解“too much regularization” ?

 Introducing regularization to the model always results in equal or better performance on the training set.

If we introduce too much regularization, we can underfit the training set and this can lead to worse performance even for examples not in the training set.

Incorrect 0.00

If we introduce too much regularization, we can underfit the training set and have worse performance on the training set.

 

penalizes

 

“1 对于正则化,优点是使模型“简单”--》这"简单"怎么理解

不知道这句话是在哪里看到的?我好像没有写啊,呵呵。如果认为它使模型简单,还是引用李航老师书中的那段话:

正则化符合奥卡姆剃刀 (Occam's razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应 该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。

2  正则化防止过拟合,但引入正则化还会引起什么缺点?怎么理解“too much regularization” ?

这个主要是是\(\lambda\)过大时会造成underfit.

总结的实在是太好了!
能不能解释一下 逻辑回归正则化 里面的 梯度下降过程时的偏导公式?

为何会和线性回归的公式一样?  J(theta) 里面 不是还带着log么,按求导法则应该会有很复杂的展开吧
请问正则化系数lamda如何确定??

1个回答

+2 投票
不错不错,学习了! 从这些学习笔记中不仅仅能够复习ang的内容,还有很多扩展的知识,赞!!
用户: (210 分)
彪哥过奖了!

感谢楼主的无私分享!怒赞!!!yes

...