Deep Learning Specialization on Coursera
NLPJob

标签热度

机器学习 coursera 斯坦福大学 公开课 斯坦福 深度学习 自然语言处理 python 数据科学 andrew ng 数学 nlp 数据分析 数据挖掘 神经网络 大数据 计算机科学 英语 deep learning 统计学 算法 课件 数据可视化 机器学习公开课 机器学习笔记 google 机器学习视频 计算机 推荐系统 数据结构 商业 r语言 java 密码学 udacity 金融 免费电子书 电子书 公开课笔记 计算机视觉 商务英语 学术英语 python数据可视化 机器学习课程 机器人 ted 文本挖掘 r 视频 java编程 回归模型 excel 深度学习课程 mysql cousera公开课 统计 大数据公开课 ted公开课 ted演讲 线性回归 mit 概率图模型 领导力 金融市场 tensorflow 学习英语 物联网 大数据专项课程 python入门 大数据课程 英语写作 英语学习 算法课程 强化学习 高级机器学习 kaggle 文本分析 机器学习资料 函数式编程 scala 游戏设计 cousera 机器学习系统 机器人公开课 开源代码 人工智能 普林斯顿大学 machine learning 线性代数 代价函数 软件工程 javascript 伯克利 市场营销 财务会计 沃顿商学院 网页开发 网站开发 web开发 网络安全 python数据科学 商业分析 非对称密码学 对称密码学 应用密码学 大规模数据科学 英语听说 概率 机器学习基石 python机器学习 算法公开课 源代码 数学思维 社交网络分析 微积分公开课 杜克大学 机器学习公开课视频 公开课视频 coursera公开课视频 coursera公开课 贝叶斯 信息论 离散数学 宾夕法尼亚大学 neural networks 伯克利大学 密歇根大学 成本函数 梯度下降 云计算 编译器 自动机 cs101 daphne koller spark 软件 管理 会计 英语交流 商业策略 风险管理 资产管理 地理信息系统 gis 卷积神经网络 面向对象编程 序列模型 移动应用开发 数据库 计算机通信 敏捷开发 高级商务分析 商务分析 商务英语课程 c语言 数据管理 投资 计算原理 计算基础 推荐系统导论 学术英语写作 android应用开发 android开发 android 机器人课程 机器人学 数据科学竞赛 yandex 深度学习公开课 深度学习书籍 数据集 机器学习资源 分布式 微积分 大规模机器学习系统 统计推断 数据科学公开课 游戏 数学思维公开课 机器学习课件 数学公开课 微积分公开课视频 微积分公开课下载 mit微积分 mit公开课 龙星计划 神经网络公开课 coursera视频 斯坦福公开课 windows ios udacity公开课 无人驾驶汽车 人机交互公开课 人机交互 正则化 过拟合 逻辑回归 模型思维 网易公开课 acl net 逻辑 cmu 情感分析 我爱公开课 引言 普林斯顿 经济 saas 52opencourse 逻辑导引 图模型 chirs manning dan jurafsky ppt 时间序列 go语言课程 go语言 工程师 语法 区块链基础 区块链 软件开发 商务基础 运营管理 商务 机器学习实战 数据系统 投资管理 swift 计算机安全与系统管理 系统管理 计算机安全 seo策略 seo工具 seo 组织领导力 css3 html5 会计基础 c sharp 英语沟通 并发 并行 全栈开发 数据仓库 商业智能 投资策略 金融基础 数据工程 python零基础 安全系统 现代密码学 硬件安全 软件安全 网络安全基础 递归神经网络 信息检索 云计算网络 云计算应用 云计算基础 云计算概念 分组交换网络 局域网 创意写作 写作 数学基础 台湾大学 基因序列 生物信息学 斯坦福算法课程 软件架构 软件设计 java程序设计 r语言基础 图论 组合数学 python数据表示 python基础 深度学习专项课程 游戏设计与开发 游戏开发 游戏设计概念 游戏设计艺术 angular 恐龙古生物学 恐龙 古生物学 推荐系统评价 jquery 英语语法 c# 高级算法 算法专项 iot python专项课程 python入门课程 商务英语交流技巧 商务英语交流 python社交网络分析 python文本挖掘 机器学习专项 金融价值 金融决策 金融公开课 数据结构与算法 大数据机器学习 大数据分析 商业与金融建模 金融建模 c++ 学术英语听说 数据分析工具 编程入门 编程 编程基础 算法思维 计算机基础 秘钥管理 hdfs 数据工程师 hive 3d交互设计 3d建模 虚拟现实 vr 洛桑联邦理工学院 函数式编程入门 数据科学课程 数据科学专项课程 学术英语课程 学术英语写作课程 斯坦福算法专项课程 斯坦福算法 python数据分析 英文简历 英文面试 英文写作 贝叶斯方法 商业分析技术 大数据建模 数据获取 数据清洗 文本挖掘课程 聚类分析 python公开课 python课程 主成分分析 深度学习资料 词意消歧 词义消歧 推荐系统入门 python书籍 机器学习算法 数据结构课程 图像处理 贝叶斯方法实战 深度学习源代码 sibyl p2p 机器学习书籍 数据结构资料 凸优化 推荐系统入门资料 数据科学导论 可视化 机器学习开源工具包 jane mcgonigal 公开课社区 挖课 courseminer 文本情感分析 多变量微积分 社会计算 数学分析公开课 概率图模型公开课 百度 吴恩达 香港科技大学 函数式语言 scala公开课 class2go coursera无法连接 coursera打不开 keith devlin 数学思维简介 社交网络 余凯 张潼 机器人视频 robert sedgewick 算法上 多伦多大学 莱斯大学 华盛顿大学 佐治亚理工学院 神经网络视频 矩阵 coursera在线视频

Text Summarization

Keyword Extraction

Text Processing

Word Similarity

Best Coursera Course

Best Coursera Courses

Elastic Patent

+10 投票

Coursera上于4月23号启动了6门公开课,其中包括斯坦福大学于“机器学习”课程,由机器学习领域的大牛Andrew Ng教授授课:

https://www.coursera.org/learn/machine-learning


课程刚刚开始,对机器学习感兴趣的同学尽量注册,这样即使没有时间学习,获取相关资料特别是视频比较方便。

由于工作繁忙的缘故,这批科目里我主要想系统的学习一下“机器学习”课程,所以计划在52opencourse和52nlp上同步我的机器学习课程笔记,一方面做个记录和总结,另一方面方便后来者参考。

Coursera上机器学习的课程学习过程是这样的:看Andrew Ng教授的授课视频或者看看课程相关的ppt;答系统随机出的题,一般5道题,单选、多选甚至填空,满分5分;编程作业,需用Octave(和Matlab相似的开源编程语言)完成,提交给系统得分,在规定时间内完成,均取最高分,超过规定时间会对得分打折。

第一周(4月23日-4月29日)的课程包括三课:

  • Introduction(引言)
  • Linear Regression with One Variable(单变量线性回归)
  • (Optional) Linear Algebra Review(线性代数回顾)(对于线性代数熟悉的同学可以选修)
4月30日是答题(Review Questions)截至时间。
 
以下是第一课“引言”的PPT课件资料,视频可以在Coursera机器学习课程上观看或下载:
PPT   PDF
 
以下是本课程的学习笔记,除了参考机器学习课程本身的内容外,还参考网上其他资料,特别是维基百科来做注解,欢迎学习该课程的同学在“我爱公开课”上进行探讨。

 

分类:机器学习 | 用户: (3.2k 分)
修改于 用户:

3 个回答

+2 投票
一、机器学习概览

1)机器学习定义:

机器学习是人工智能的一个分支,目标是赋予机器一种新的能力。机器学习的应用很广泛,例如大规模的数据挖掘(网页点击数据,医疗记录等),无人驾驶飞机、汽车,手写手别,大多数的自然语言处理任务,计算机视觉,推荐系统等。 机器学习有很多定义,广为人知的有如下两条:

Arthur Samuel (1959): Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

 

注:Arthur Lee Samuel (1901–1990) 教授是美国人工智能领域的先驱,他设计了一些下棋程序,可以通过不断的下棋来学习,从而达到很高的下棋水平。

 

Tom Mitchell (1998) : Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

 

例子:对于一个垃圾邮件识别的问题,将邮件分类为垃圾邮件或非垃圾邮件是任务T,查看哪些邮件被标记为垃圾邮件哪些被标记为非垃圾邮件是经验E,正确识别的垃圾邮件或非垃圾邮件的数量或比率是评测指标P。

 

2)机器学习算法的类型

1、有监督学习(Supervised learning):通过生成一个函数将输入映射为一个合适的输出(通常也称为标记,多数情况下训练集都是有人工专家标注生成的)。例如分类问题,分类器更加输入向量和输出的分类标记模拟了一个函数,对于新的输入向量,得到它的分类结果。

2、无监督学习(Unsupervised learning):与有监督学习相比,训练集没有人为标注的结果。常见的无监督学习算法有聚类。

3、半监督学习: 介于监督学习与无监督学习之间。

4、强化学习(Reinforcement learning): 通过观察来学习如何做出动作,每个动作都会对环境有所影响,而环境的反馈又可以引导该学习算法。

其他的类型包括推荐系统,Transduction,Learning to learn等。
用户: (3.2k 分)
+1 投票

3)有监督学习详解

有监督学习主要会提供一些标注样本,分为两大问题:回归和分类

房屋价格预测-回归(Regression): 预测连续的输出值(价格)

有监督学习举例-房屋价格预测-52opencourse.com

 

 

乳腺癌(良性,恶性)预测问题-分类(Classification): 预测离散的输出值(0, 1)

乳腺癌预测问题-52opencourse.com

 

用户: (3.2k 分)
0 投票

4) 无监督学习详解:

有监督学习和无监督学习的对比,看图更形象:

有监督学习-我爱公开课-52opencourse.com                              无监督学习-我爱公开课-52opencourse.com

例子: Google News, 基因序列分析,社会网络分析,市场切分等...

 

特别的例子:鸡尾酒会问题(Cocktail party problem)

“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。

鸡尾酒会问题-我爱公开课-52opencouse.com

鸡尾酒会问题算法(一行代码):

[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

 

一些参考资料:

解决方法ICA demo: http://research.ics.tkk.fi/ica/cocktail/cocktail_en.cgi

http://www.vislab.uq.edu.au/education/sc3/2001/johan/johan.pdf

http://www.physorg.com/news75477497.html
http://en.wikipedia.org/wiki/Cocktail_party_effect

http://www.scientificamerican.com/article.cfm?id=solving-the-cocktail-party-problem

 

以下关于"cocktail party problem"的文字引用自该链接: http://xiaozu.renren.com/xiaozu/121443/thread/335879281

stanford机器学习公开课(ml-class.org)第一章unsupervised learning那段视频里解决鸡尾酒会问题(cocktail party problem)就写了一行代码:

[W,s,v] = svd ((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

lz土人感觉是用了PCA的方法。。可是W运行出来丝毫没有unmixing的效果。。。用的是采样频率16kHz的Speech-Speech和Speech-Music两个样例。。

google这条代码有post说这是ICA,我就迷茫了。。。看不出来怎么是ICA了。。折腾一夜了,毫无头绪。。。

顺便求此问题的demo。。各种语言均无妨。。

用户: (3.2k 分)
修改于 用户:
...